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Damage control refers to actions made towards minimizing the extent of damage associated with 

a given emergency situation. Depending on context, damage control may refer to emergency 

procedures dealing with the sinking of a ship or to surgery procedures dealing with severe 

trauma or even to a company in Marvel Comics, which repairs damaged property arising from 

conflicts between super heroes and villains. By extension, “tissue” damage control refers to 

adaptive responses that minimize the extent of tissue damage and dysfunction associated with 

the pathogenesis of immune mediated inflammatory conditions, including in infectious 

diseases1,2. Presumably, tissue damage control is regulated by a number of evolutionarily 

conserved stress- and damage-responses associated with the induction of overlapping profiles of 

gene expression1. This argues for the existence of a core number of evolutionarily conserved 

genes regulating tissue damage control1. Moreover, this might explain why overlapping stress- 

and damage-responses confer protection against apparently unrelated forms of stress and 

damage, a phenomenon known as hormesis. A subgroup of these evolutionarily conserved genes 

regulates iron metabolism and control the participation of iron in the production of free radicals 

leading to oxidative stress and tissue dysfunction. In support of this notion, immune mediated 

inflammatory diseases are often associated with deregulated iron metabolism and oxidative 

stress3,4. Here I will discuss how the expression of stress responsive genes controlling iron 

metabolism exert anti-oxidant effects that confer tissue damage control in different infectious 

diseases5-7. 
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