JCET

Jagiellonian Centre for Experimental Therapeutics

ENDOTHELIAL PROFILING OF DRUG VASOTOXICITY

JAGIELLONIAN University In Krakow

PREDICTIVE SAFETY ANALYSIS OF A PANEL OF SMALL-MOLECULE TYROSINE KINASE INHIBITORS

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

WHY ENDOTHELIAL PROFILING?

- vascular endothelium is the largest interface for systemic drugs
- drug-induced endothelial/vascular dysfunction is an important safety issue yet currently neglected in pre-clinical drug development
- severe vascular adverse effects have led to clinical failure of a number of diverse drugs
- endothelial dysfunction is an independent predictor for major cardiovascular events
- evaluation of endothelial function can predict vascular toxicity

PROTEIN KINASE INHIBITORS – THE HOTSPOT OF PHARMA

- >250 kinase inhibitors are currently undergoing clinical trials, >50 already approved for use by the FDA [/]
- most in oncologic indications (imatinib first small molecule KI approved for chemotherapy)
- emerging KIs for other indications, such as RA, IBD, glaucoma and neurodegenerative diseases [2]
- one of the most prevalent druggable targets about 1/3 of all drug discovery programs aimed at developing KIs
- however, attrition rate is high due to severe toxicities observed in preclinical studies and in clinical trials [3, 4]

[1] Roskoski R., Jr., <u>Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update</u>. Pharmacol Res, 2020. 152: p. 104609.
 [2] Benn & Dawson, <u>Clinically precedented protein kinases: rationale for their use in neurodegenerative disease</u>. Front Aging Neurosci, 2020. 12: p. 242.
 [3] Bhullar et al., <u>Kinase-targeted cancer therapies: progress, challenges and future directions</u>. Mol Cancer, 2018. 17(1): p. 48.
 [4] Ferguson & Gray, <u>Kinase inhibitors: the road ahead</u>. Nat Rev Drug Discov, 2018. 17(5): p. 353-377.

THREE GENERATIONS OF TYROSINE KINASE INHIBITORS

Major drug of each gen	FDA approval	Sponsor	Target	Indications	FDA label cardiovascular warnings and precautions*
lmatinib (1st gen)	2001	Novartis	Bcr-Abl	First-line Chronic Myelogenous Leukaemia (CML) treatment	severe congestive heart failure and LV dysfunction; cardiogenic shock
Nilotinib (2nd gen)	2007	Novartis	Bcr-Abl	Second-line Chronic Myelogenous Leukaemia (CML) treatment	QT prolongation and sudden deaths (boxed warning)
Ponatinib (3rd gen)	2012	ARIAD Pharmaceuticals	Bcr-Abl, BEGFR, PDGFR, FGFR, EPH, SRC, c-KIT, RET, TIE2, FLT3	T315I-positive Chronic Myelogenous Leukaemia (CML); T315I-positive Acute Lymphoblastic Leukaemia (ALL)	arterial occlusion, venous thromoembolism, heart failure (black box); hypertension; cardiac arrhythmias

* Lanmore et al. (2020) Chem. Res. Toxicol. 33, 125–136; see also Moslehi J.J. (2016) N Engl J Med. 375(15):1457-1467, Alexandre et al. (2020) J Am Heart Assoc. 9(18):e018403, Manouchehri et al. (2020) Arterioscler Thromb Vasc Biol. 40(2):301-308

CAN WE PREDICT CV LIABILITIES WELL BEFORE CLINIC?

Major drug of each gen	FDA approval	Sponsor	Target	Indications	FDA label cardiovascular warnings and precautions*
lmatinib (1st gen)	2001	Novartis	Bcr-Abl	First-line Chronic Myelogenous Leukaemia (CML) treatment	severe congestive heart failure and LV dysfunction; cardiogenic shock
Nilotinib (2nd gen)	2007	Novartis	Bcr-Abl	Second-line Chronic Myelogenous Leukaemia (CML) treatment	QT prolongation and sudden deaths (boxed warning)
Ponatinib (3rd gen)	2012	ARIAD Pharmaceuticals	Bcr-Abl, BEGFR, PDGFR, FGFR, EPH, SRC, c-KIT, RET, TIE2, FLT3	T3151-positive Chronic Myelogenous Leukaemia (CML) T3151-positive Acute Lymphoblastic Leukaemia (ALL)	arterial occlusion, venous thromoembolism, heart failure (black box); hypertension; cardiac arrhythmias

* Lanmore et al. (2020) Chem. Res. Toxicol. 33, 125–136; see also Moslehi J.J. (2016) N Engl J Med. 375(15):1457-1467, Alexandre et al. (2020) | Am Heart Assoc. 9(18):e018403, Manouchehri et al. (2020) Arterioscler Thromb Vasc Biol. 40(2):301-308

PREDICTIVE VASCULAR SAFETY STUDIES USING MRI IN VIVO

Drug	6-year incidence of	Hypertension	Abnormal ankle-	Overall	PRECLINICAL
studied	cardiovascular events*		brachial index (ABI)*	cardiovascular	ENDOTHELIAL
				risk	PROFILING
Imatinib	2.5% (400 mg once per day)	N/A	6.3% (first-line imatinib)	low	endothelial dysfunction
(Ist gen)					detected in mice
					at a HIGH DAILY DOSE
Nilotinib	15.9% (400 mg twice per day)	6.6%**	26% (first-line nilotinib)	medium	endothelial dysfunction
(2nd gen)					detected in mice
					at a MEDIUM DAILY DOSE
Ponatinib	cumulative serious adverse	26% (median	N/A (first-line trial closed	high	endothelial dysfunction
(3rd gen)	effects: 10% cardiovascular, 7%	follow-up 28	due to significant		detected in mice
	cerebrovascular, 7% peripheral,	months)*	vascular toxicity)		at a LOW DAILY DOSE
	14% arterial, 3% venous		•		
	(median follow-up 28 months)				

* compiled from: Moslehi & Deininger (2015) J Clin Oncol 33:4210-4218; ** as reported by: Novo et al. (2020) Oncology 98(7):445-451

ENDOTHELIAL PROFILING INVIVO

- impact of TKIs on endothelium-dependent vasodilation in vivo (C57BL/6 mice)
- 3 series of experiments including:
 - I. endothelium-dependent response to acetylcholine and evaluation of vasodilatation response assessed in the abdominal (AA) and thoracic (TA) aorta
 - 2. endothelium-independent response to sodium nitroprusside and evaluation of vasodilatation response assessed in the abdominal (AA) and thoracic (TA) aorta
 - assessment of vasodilation resulting from increased blood flow in the femoral artery (FA) after short-term occlusion using flow-mediated vasodilation (FMD) the most widely accepted way to assess endothelial function in clinical condition
- study used original MRI-based method to evaluate endothelial function in mice (developed by JCET*)

MAGNETIC RESONANCE IMAGING (MRI)

 imaging performed using a 9.4 T scanner (BioSpec 94/20 USR, Bruker) with a 210 mm horizontal bore magnet, equipped with a BFG-113/60-S gradient system and 36 mm ¹H quadrature volume resonator

Bar et al. (2019) Journal of the American Heart Association, 8(6), e011171

EXPERIMENTAL APPROACH – THE PHARMACOLOGY BEHIND

adopted from: Camici et al. (2015) Nat Rev Cardiol 12, 48–62

ENDOTHELIUM-DEPENDENT FUNCTION IMPAIRED ACETYLCHOLINE-MEDIATED VASODILATATION OF AORTA (AA,TA)

CONFIDENTIAL – unpublished results from: Marczyk B. et al. (2022), in preparation

ENDOTHELIUM-DEPENDENT FUNCTION IMPAIRED ACETYLCHOLINE-MEDIATED VASODILATATION OF AORTA (AA, TA)

CONFIDENTIAL – unpublished results from: Marczyk B. et al. (2022), in preparation

ENDOTHELIUM-INDEPENDENT FUNCTION UNAFFECTED SODIUM NITROPRUSSIDE-MEDIATED DILATATION OF AORTA (AA,TA)

CONFIDENTIAL – unpublished results from: Marczyk B. et al. (2022), in preparation

ENDOTHELIUM-INDEPENDENT FUNCTION UNAFFECTED SODIUM NITROPRUSSIDE-MEDIATED DILATATION OF AORTA (AA,TA)

CONFIDENTIAL – unpublished results from: Marczyk B. et al. (2022), in preparation

EXPERIMENTAL APPROACH – THE PHARMACOLOGY BEHIND

- flow-mediated
 vasodilation (FMD) –
 dilation of the femoral
 artery (FA) resulting
 from increased blood
 flow after short-term
 occlusion
- clinically-relevant, used in humans

ENDOTHELIUM-DEPENDENT FUNCTION IMPAIRED FLOW MEDIATED DILATATION OF FEMORAL ARTERY (FA)

CONFIDENTIAL – unpublished results from: Marczyk B. et al. (2022), in preparation

ENDOTHELIUM-DEPENDENT FUNCTION IMPAIRED FLOW MEDIATED DILATATION OF FEMORAL ARTERY (FA)

CONFIDENTIAL – unpublished results from: Marczyk B. et al. (2022), in preparation

ENDOTHELIAL PROFILING PREDICTIVE VALUE – CLINICAL TOXICITIES VS. PRECLINICAL RESULTS

Drug	6-year incidence of	Hypertension	Abnormal ankle-	Overall	Endothelial profiling
studied	cardiovascular events*		brachial index (ABI)*	cardiovascular	in vivo
				risk	
Imatinib	2.5% (400 mg once per day)	N/A	6.3% (first-line imatinib)	low	LOW RISK
(Ist gen)					endothelial function impaired
					at 120 mg/kg b.w./day
Nilotinib	15.9% (400 mg twice per day)	6.6%**	26% (first-line nilotinib)	medium	MEDIUM RISK
(2nd gen)					endothelial function impaired at 30 mg/kg b.w./day
Ponatinib	cumulative serious adverse	26% (median	N/A (first-line trial closed	high	HIGH RISK
(3rd gen)	effects: 10% cardiovascular, 7% cerebrovascular, 7% peripheral, 14% arterial, 3% venous (median follow-up 28 months)	follow-up 28 months)*	due to significant vascular toxicity)		endothelial function impaired at 3 mg/kg b.w./day

* compiled from: Moslehi & Deininger (2015) J Clin Oncol 33:4210-4218; ** as reported by: Novo et al. (2020) Oncology 98(7):445-451

ENDOTHELIAL PROFILING SIGNIFICANCE FOR DRUG DISCOVERY AND DEVELOPMENT

- first demonstration of NO-dependent endothelial function impaired by TKI in vivo in mice
- direct evidence of subtle, yet differentiating endothelium-dependent response in the aorta, both induced by acetylcholine and by increased flow
- dose-dependent endothelial dysfunction at dosing relevant to human CML treatment
- first kinase inhibitor study based on our state-of-the-art 3D MRI method in vivo
- your compound could be next!

BEYOND KINASE INHIBITORS – ENDOTHELIAL PROFILING AT JCET

- scientific expertise centre of excellence in endothelial research, 40+ top-tier publications in 2021
- original experimental approach based on internal know-how and experienced team [/]
- methodology successfully used and validated in a number of indications/animal models in large vessels [2-7], as well as in recently-developed approach to study microvasculature [8]
- [1] Bar et al. (2016) NMR in Biomedicine, 29(8):1088
- [2] Sternak et al. (2018) Frontiers in Pharmacology, 9, 178
- [3] Bar et al. (2019) Vascular Pharmacology, 106581
- [4] Bar et al. (2019) Journal of the American Heart Association, 8(6), e011171
- [5] Bar et al. (2020) Journal of the American Heart Association, 9(21), e016929
- [6] Proniewski et al. (2021) Cells, 10(6), 1448
- [7] Mohaissen et al. (2021) Cardiovascular research, cvab306
- [8] <u>Kwiatkowski et al. (2021)</u> Scientific reports, 11(1):18915

USE CASES FOR VASOTOXICITY PROFILING IN VIVO

- risk assessment for new compounds
- understanding the mechanisms of toxicity
- lead selection and candidate nomination
- managing clinical development risk
- improved out-licensing data package
- deeper in-licensing due diligence

MORE THAN TOXICITY: ENDOTHELIAL/VASCULAR PROFILING IN VIVO

- risk assessment for new compounds
- understanding the mechanisms of toxicity
- lead selection and candidate nomination
- managing clinical development risk
- improved out-licensing data package
- deeper in-licensing due diligence

- detection of vasoprotective profile
- understanding the protective mechanisms
- exploring new therapeutic areas
- drug repurposing/repositioning
- improved out-licensing data package
- deeper in-licensing due diligence

CONTACT

Prof. Stefan Chłopicki
 Director of JCET
 stefan.chlopicki@jcet.eu

 Dr. Dominik Czaplicki Industrial Liaison Officer dominik.czaplicki@jcet.eu